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Tuning and Temperament and why we have to do it

It is axiomatic that no scale on a keyboard ingrument can be perfectly in tune. Reaching a
tolerable compromise is called tempering. Natureprovidesanumber of exactly in-tuneintervals,
the harmonic series, of whichthreeof thefirst sixteen areincompatible with any normal European
scale: 7 isvery flat, 11 ishafway between F and F#, 13 is noticeably flat, and 14 is the octave of
7. Natura horn and trumpet players have to pull them into tune with our scales.

The number of each harmonic, starting the series with 1 as the fundamental, also shows
their ratio relationship. They double a the octave, for example (2:1, 4:2, 6:3, etc). Touch a
sring lightly halfway along (2:1), and the octave will sound; touch it a third of the way, the
twelfth (3:1) will sound, and so forth. Similarly with the number of vibrations per second (or
Hertz). Our tuning A is440 Hz; the E apurefifth higher is660 Hz, the A an octave higher is880
Hz.

Threereasonsthat no scale can be intune are: that twel ve fifths piled on top of each other
are an eighth of atone larger than seven octaves similarly piled; that three thirds on top of each
other are dmost a quarter-tone smaller than an octave; and that two octaves plus one third are
amost an eighth of tone smaller than four fifths.

We measure musical intervals with a unit called the cent (our equivdent of a millimetre
or cubic centimetre, etc). Thereare 100 centsinan equa-tempered semitone, and therefore 1200
centsin an octave. Like mm and cc, cents are artificid, but aso like them they are always the
same Sze, whereas no two successve tones are the same number of Hertz (Hz) apart.

Building ascalewithintervalsfromthe harmonic series, and startingwiththe 8th harmonic
C, the D atone higher (9:8) is 204 cents above the C, a mgjor tone; the E atone above (10:9, a
smaller interval than 9:8, and thusaminor tone) is 182 cents above the D, and together these add
up to the ratio of a pure major third (5:4), 386 cents. The F (4:3) is 498 cents, a pure fourth
abovethe C, and subtracting 386 from498 givesthe distance from E to F, awide semitone of 112
cents (16:15). The G (3:2) is 702 cents, a pure fifth, above the C. The A and the B have been
variously placed by differing authorities, but the most logical solution isto put apuremajor third
on F which, because F to G is dready set at 204 cents (702 minus 498), means that Gto A must
be 182 cents (386 minus 204). If B to Cis to be the same size asE to F, as the ratio 16:15
implies, then A to B must be 204 cents, which permits apure major third also from Gto B. This
means that all the mgjor thirds of the diatonic scale are pure:

M m Yo M m M Yo

C D E F G A B C M = mgor tone
204 182 112 204 182 204 112 m = minor tone
0 204 386 498 702 884 1088 1200 15 = semitone
* 386 * * 386 *
* 386 *

We could set aC major scae on a keyboard instrument, using these harmonic intervals,
and this will be perfectly intune. The problems arise when we wish to change key or use these
pitches other than melodicaly. Because the stepsof themajor scale are major tone, minor tone,
semitone, etc, if we want a D magjor scale, where the first step should be a mgjor tone we have
already set aminor tonefrom D and E, and there are similar problems all the way up and in dl
other keys. Thusthis tuning, called Just Intonation, cannot be used on a keyboard instrument
which, by its nature, must have fixed pitches. It can be used by singers and by instruments whose
pitch can be varied dightly, and indeed it isso used by anyone who wantsto play or sing perfectly
in tune, asit has been since ancient Greek times.
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Once keyboard instruments were introduced, a new tuning was necessary. The first, in
the Middle Ages, was the Pythagorean, in which all but one of the fifths were pure and al the
whole tones but one were major tones of 204 cents. The problem came with the major third. C
to E (ratio 5:4) is 386 cents, which isthe same as amajor tone (204 cents) plusaminor tone (182
cents). When, however, two mgor tones are added together, the result is athird of 408 cents,
an eighth of atone sharp, 24 cents, called a Pythagorean comma. A chord with tonic, fifth, and
a408-cent third makes a very discordant sound. The third was regarded as a dissonance in the
Middle Ages Smply because it was dissonant. By the mid-15th century, and probably from the
late 14th, composers (e.g. in the Faenza Codex) took advantage of the fact that four of the eight
thirdswereamost pure. Arnault de Zwolle, writing about 1440, sarted hiscycle of fifthson B,
because that was the lowest note of his clavichord, tuning pure fifth flat-wise from there, B-E, E-
A, A-D, D-G G-C, C-F, F-Bb, Bb-Eb, Eb-Ab, Ab-Db, Db-Gb. These twelve fifths total
8424 cents (702 x 12), which is 24 cents, the Pythagorean comma, more than seven octaves
(1200 x 7), and thereforehislag fifth, from Gb to B, had to be made small (678 cents: 702 minus
24). As a reault, the four thirds D-F#, A-C#, E-G#, and B-D#, which appear below as
diminished fourths, are aimost pure (384 cents indead of 386):

B C Db D4 Eb Eb F Gb G Ab Ay Bb By

9 9 114 9 114 9 9 114 9 114 9 14
* 204 %% 204 *x  *x 204 ** 204 ** 204 *
90 0 90 204 294 408 498 588 702 792 906 996 1U0
o 384 * * 384
* 384 *

When harmony had evolved to the stage where thirds were anecessary part of any chord,
anew temperament was needed. The third had to be pure, and the fourths and fifths as pure as
possible. Thiswas achieved by taking the average, or mean, size of whole tone, by halving the
386-cent third and so producing atone of 193 cents, the meantone, atone between themajor and
the minor tone. At the sametime, the syntonic comma of 22 cents, the difference between four
fifths and two octaves plus athird, one of the problems with which we started, was distributed
among thefifths, each commonly used fifth being tempered by aquarter of acomma, or 5.5 cents,
producing an interval which was dlightly out of tune, but not enough to cause too much trouble.
Thisscaleis called quarter-comma Meantone, Aron'sM eantone (after the first person to describe
it fully, in 1523) or just Meantone. This can be congructed by starting on C and tuning the third
C-E pure. The fifths within this third, C-G G-D, D-A, and A-E, are then tempered by tuning
each a quarter of acomma (5.5 cents) narrow (696.5). Then pure thirds are tuned both up and
down from each of these notes. Thisgives excellent results save that the pure third below C (Ab)
is by no means the same note as the pure third above E (G#). The Ab is 814 cents above C,
whereas the G# isonly 772 cents above

C Ct D Eb Ef F F# G G A Bb Bh C
755 1175 1175 755 1175 755 1175 755 1175 1175 755 1175
* 193 ** 193 * * 193 ** 193 ** 193 *

0 755 193 3105 386 5035 579 696.5 772 889.5 1007 1082.5 1200
NB: Ab =814

We have already seen that threethirds are 41 centslessthan an octave (386.3 x 3= 1159
cents); thisgap is called adiésis, and thisis the size of the so-called wolf fifth which results when
Ab isused ingead of G# or viceversa It getsits name fromthe fact that afifth 41 cents out of
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tune howlslike awolf. The howl isdueto the beats between the two notes. When two notes are
one or two Hz out of tune, a beat or throb of once or twice a second can be heard. Asthey get
further out of tune, the beat rate increases by the number of Hz they differ. Around the tuning
A (440H2z), 41 centsis 10 Hz, and abeat-rate of ten per second producesquiteahowl. The only
beat-freeintervals are those produced by the whole-number ratios of the harmonic series, which
iswhy Just Intonation isthe only scale whose intervals are perfectly in tune. These beatsare used
when tuning: as one plays the C and the E, one turns the tuning key on the wrest pin of the E,
listening to hear the beats slow down until they findly vanish; the third is then pure. Tempering
the G above middle C, onefirst tunes it purefrom the C and then flattensit until one can hear one
and aquarter beats per second. Theother fifthsaretempered similarly though thebeat ratediffers
according to the pitch and to which octave one isworking in.

There are also four wolf thirds (grictly, diminished fourths again) of 428 centsin Mean-
tone, C#-F F#-Bb, B-Eb, and G#-C. These areall in keyswhich come at the extremes of the
cyde of fifths, keyswhich composers took care to avoid. However, there was no necessity to
start tuning from C, and by moving the starting point one or more fifths in either direction, the
wolves could be shifted. A way that was often employed to avoid the wolf fifth wasto split akey
so that thefront haf controlled strings or pipes tuned to G#, and the back half to A b, but it was
sddom practicableto avoid dl the wolvesin thisway, despite anumber of attemptsto do so with
keyboards with 19, 31, or even more keys to the octave.

When afairly fully chromatic range was wanted, temperament had to proceed further.
Smaller fractions of the commawere tried, 5th comma, 6thcomma, and 8th comma. The abiding
problem isthat as one improves the third, inevitably one worsens the fifth. The system used on
pianostoday, Equa Temperament, wasdevised before 1600 (an gpproximationto it was used on
fretted stringssuch asviols and lutes much earlier). Inthistemperament everythingis out of tune
except theoctave. Itignoresdl naturd intervalsexcept the octave, andingeadit isalogarithmic
scade based on the twdfth root of two. The fifth and the fourth are tolerable, and much better
than in Meantone, being only two centsout (700 instead of 702, and 500 instead of 498), but the
thirds are much worse (14 cents out; 400 ingead of 386), whichis why even aslate as the Great
Exhibition of 1851, all the organs are said still to have been tuned in Meantone, though this was
not the normal quarter-commaMeantone. It isaso why non-keyboard musicians, onthe whole,
tried to avoid it until Schénberg and histheories made it inevitable.

What was used instead was the various irregular temperaments such asthose of Valotti,
Werckmeister, Kirnberger, Young and others. These werebased onimproving asfar as possible
the keys which one was mogt likely to use, and allowing those less often used to be fairly dirty.
Asalready noted, one did not, of course, dways have to tune from C; when playing in Eb, one
could alwaysstart thereand let A mgor suffer. 1t hasbeen suggested that something likethiswas
the Well-Tempering that Bach used in The 48 Preludes and Fugues. John Barnes, for example,
analyzed The 48 in Early Music (April 1979) and, by assuming that those which were dow and
with good plain chords should be better intunethan Equa Temperament, while those with much
running passage work which could disguise the tuning, could be worse, came up with a Bach
WEell-Temperament. Other scholars, naturdly, disagreed and came up with other solutions. |
have greatly simplified the argument here.

For those who wish to investigate the subject further, J Murray Barbour Tunings and
Temperaments (Da Capo Press, 1972; origindly Michigan State College, East Lansng, 1951) is
agood pleceto gart, as isthe article in The New Grove Dictionary and The New Grove Dicti-
onary of Musical Ingruments. There isin the Bate Collection a 12-string monochord on which
any temperament can be set quite easily, and a virginals which can be tuned to any temperament
desired, but rather more laboriously (always tune down first, to check whether the key is on the
right pin). Both may be used by anybody interested in experimenting with temperaments.
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For thosewho wishto cdculate centsfromHertz or ratios, using a pocket calculator with
logs, the procedure is: [higher + lower] = ... [log(n) x 1731.234 (the constant for log(n); the
constant for log(10) is 3986.3137)] = cents. To go the other way, from cents to ratio or Hz:
[cents + the constant] = ... [antilog x base Hz or ratio] = Hz or ratio. As acheck, dways start
with something you know the answer to, e.g. [3 + 2] = 1.5 [log(n) (0.4054651) x 1731.234] =
701.95498; call it 702 cents. ALWAY S use the congtant for the type of logs being used; the con-
stant for log(n) used with log(10) can only produce a nonsense.

(with thanksfor much kind help from Lewis Jones)

Originally written as a Bate Collection Handbook, 1990.
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